Zero Emissions LSM Magnetic Propulsion on Standard Railway/Roadway Infrastructure

Presentation to Congressman Bob Filner
August 6, 2009
General Atomics Test Track

A presentation by:

Innovative Transportation Systems Corp.
General Atomics Electromagnetic Systems Division
AECOM
DEVELOPING LINEAR MOTOR CONCEPTS FOR ZERO-EMISSIONS PEOPLE AND GOODS MOVEMENT

Imbedded Linear Motor Bus Transit System
Imbedded Linear Motor Trucking System
Electric LSM operated light passenger trains
Zero Emissions Electric Locomotives for Rail Yards

Multipurpose magnetic rail bogey with fifth wheel couples with trailers carrying containers to eliminate locomotive and diesel emissions at or near port terminals.
Innovative Transportation Systems Corp. (ITSC)

Collaborated with General Atomics to determine feasibility of utilizing Linear electric motors that launch fighter aircraft from aircraft carriers and applying it to moving rail cars.

The catalyst for bringing General Atomics and AECOM together.

Some other affiliates of the Shapery Group of Companies, a major commercial real estate and technology developer.

- Shapery Gyronautics Corporation
- Shapery Holdings LP
- Shapery Center Developers
- Southern California Transportation Solutions
- Columbia Funding LLC
- Shapery Developers Gas & Electric Corp.
- 12th & A Hotel Partners LP

Headquarters in San Diego, CA
General Atomics

- World’s leader in high power linear motors.
- Founded 1955; Privately owned; 5,000 employees

DEFENSE
- UAV / Predator
- Advance Sensors
- Naval Ship
- Electrification
- Electromagnetic Aircraft Launch

ENERGY
- Fusion
- Fission Reactors
- Uranium Mining
- Algae Synfuels

TRANSPORTATION
- Linear Motor Transportation
- Maglev Systems
- Streetcar Refurbishment
- Mining Truck

Innovative Transportation Systems Corp.
An affiliate of Shapery Enterprises
AECOM Corporation

• World’s largest engineering and environmental company.
• Strong international experience to effect large transportation projects.
• Representing many Ports and Railroad projects worldwide.
• Designed Alameda Corridor.
• Headquarters in Los Angeles.
Background

• Sandor Shapery, President and Founder of ITSC, collaborated with General Atomics to determined feasibility of utilizing Linear electric motors that launch fighter aircraft from aircraft carriers and applying it to moving rail cars.
Key Building Block is Linear Synchronous Motor (LSM):

- 3-Phase Windings
- Stainless Steel Cover Plate
- Concrete Beam: 214.4” (5438mm) Length, 48” (1219mm) Width, 12” (305mm) Depth
- LSM windings embedded in concrete beam
- Splice connections at each end of beam

* Patent Pending

Simple modular design – minimum impact during construction
Efficient electric linear motor – minimizes operating costs
No moving parts – minimizes maintenance costs

Innovative Transportation Systems Corp.
An affiliate of Shapery Enterprises
Using Existing Railway Infrastructure is a Lower Cost Solution

Linear motor embedded in middle of existing railway track

Magnetic rail bogey can be used to transport standard truck trailers
Zero Emissions Container Mover System for Transporting Container from On-dock Terminals to Inland Near-dock Terminals

Vehicle-mounted permanent magnets follow electromagnetic force generated by linear motors

Linear motors in roadway provide propulsion and power for vehicles
Linear Motors for Roadways

- Linear motors used to create electromagnetic roadways
- Vehicles magnetically propelled
- Electric vehicles inductively charged “on the go”
- Zero emissions
- Energy efficient

Ideal for truck drayage from Ports to near and off-dock terminals.
LSM – Truck and Bus Technology

• Linear motor imbedded below road surface propels the vehicle and charges the vehicle’s battery (energy storage system) while vehicle is automatically transported.

• A vehicle can travel some distance over embedded LSMs on roadways then for a distance without, while powering on its own batteries.

Drive over LSM to propel
And charge battery

Leave LSM and continue using only vehicle’s battery

Drive back onto LSM portion of roadway for recharging

Increases productivity by eliminating long charging downtimes.
Emissions Reduction Potential

35,605 tons per year of emissions can be eliminated in the San Pedro Bay ports region by converting 1.2 million truck trips/year to a zero emissions container moving system, according to a Port of Los Angeles staff study.

Fuel Reduction Potential

Net fuel savings per year can be $9.2M per year.

Truck Fuel Cost $10.8M – LSM Power Cost $1.6M = $9.2M

Diesel fuel cost from truck drayage.
Ave. 15 miles RT from all terminals / 5 miles/gal. = 3 gal./trip
3 gal./trip x 1.2Mil. Trips = 3.6 Million gallons
3.6 Million gallons x $3.00/gal. = $10.8M/year fuel cost

Electricity cost of LIM/LSM
0.5 lb diesel/Hp-hr → 14 Hp-hr/gal → 10.6 kWhr/gal
400 ton-miles/gal over 500 million miles = 13.3m kWhr
13.3M kWhr x $0.12/kWhr = $1.6M/year electricity cost
Proprietary Information

ITSC ZECMS POTENTIAL ALIGNMENTS AND RFCS PROPOSED STATIONS

- **Pier A to ICTF Main Loop**
 - (83,000 TEUS)

- **Extension toward POLB Stations 3 & 2**
 - (720,000 TEUS) + (PIER A 83,000) = 803K
 - Additional 2.5 to 2.8 Miles from Main Loop

- **Extension toward POLA Stations 1, 5 & 6**
 - (670,000 TEUS) + (PIER A 83,000) = 753K
 - Additional 1.4 to 1.8 Miles from Main Loop
LSM Drive Characteristics
Preliminary Analysis - The Virtual train

• Independent remote or on board control of each vehicle

• Magnetic propulsion and regenerative braking reduces energy cost by as much as 75% under certain operating conditions.

• Only one vehicle allowed per track section – collisions impossible.

• Reliable - no moving parts

• Force is applied directly to vehicle
 – Reduces wear on wheels and rails
 – High performance (acceleration, velocity) → High Throughput

• Complete control over acceleration and velocity

• Quiet – no engine noise.

• Capital cost comparable to electric overhead conversion
LSM adaptation from manufacturing

Video courtesy of MagneMotion Corp.
Technology Maturity

Linear motor goes back 100 years when first described by Robert Goddard in 1905. He went on to become the father of the liquid fuel rocket.

Emile Bachelet, a French engineer applied for a patent in 1910 for a magnetically levitated railroad car.

Linear motors have been used in rail systems:

- Vancouver Light Rail System
- Kuala Lumpur Transit
- JFK AirTrain
- Detroit People Mover
- Scarborough Light Rail, Toronto
- Shanghai TransRapid System

The Shanghai Transrapid LSM (long-stator) system has proven highest reliability factor of all existing LIM-based rail systems running at 99.1% and is the most reliable public transportation system in the world.

Also proved that the long-stator system of putting motor windings on guide-way instead of vehicle is less costly over all.
GA Transportation Technology: Evolution from Maglev to LSM Rail, Bus and Truck

Urban Maglev Program
- Funded by FTA and Penn DOT, with GA cost share
- Licensed Livermore “Halbach Array” maglev technology
- 400-foot test track demonstrates proof-of-concept in 2004
- Developed levitation, propulsion, guidance, control, and ATP

Electromagnetic Cargo Conveyor (ECCO)
- ECCO concept using maglev for goods movement originated by CSULB
- Developed for port applications using same GA passive maglev (“Halbach Array”) technology as Urban Maglev Program

Existing Infrastructure Solutions
- Concepts using existing rail (MagneTrack™)
- Concepts that can operate at port terminals
- Concepts that can operate on existing roads (MagneTruck™)

Innovative Transportation Systems Corp.
An affiliate of Shapery Enterprises
LSM for rail and bus transportation systems leverages major commercial and military technology investments.

- Inverters for 400-ton mining trucks, light and heavy rail
- Linear electric propulsion, control, and train protection systems for ECCO Maglev
- Launch systems with 50-year design life in full-scale development
System Reliability

- Root of system design stems from General Atomics work for military on the Electro-Magnetic Launching System (EMALS).

- EMALS will be part of newest aircraft carriers, where a 78,000 lbs. fighter jet will be launched accelerating from 0 to 200 mph in under two seconds.

- System has reliability far beyond what is required for ground based transportation operations.

- Patented fail-safes will be applied to transportation systems.
Value Proposition / Public Health-Public Safety

- Reduction of energy costs as diesel fuel is four times more costly per energy unit than electricity from a stationary power plant.

- Reduction of pollution as diesel engines produce 120 to 240 times more particulate pollution and NOX than a stationary power plant.

- Reduction of costs to the public of lost time, wages and health resulting from the effects of pollution, thereby increasing public health benefits.

- Low installed cost and Low operating and maintenance costs
Market Potential

- **Freight**
 - Railroads
 - Trucks
 - Port terminals
 - Intermodal railyards

- **Passenger Rail**
 - Metro
 - Light Rail
 - Commuter Rail

- **Autos / Trucks / Buses**
 - Auto lanes
 - Truck lanes
 - Bus lanes
MagneTrack™ Applications

Zero Emissions Container Transport System for Ports

Zero Emissions Rail yard Operations - Moving Rail Cars and Constructing Train Consists

Zero Emissions Passenger Rail Without Unsightly Overhead Catenaries

Recapture of Energy on Downhill Train Operations into Grid and Reuse of Energy to Assist in Uphill Operations

Zero Emissions for Trains Traveling Through Long Tunnels

Zero Emissions Train Locomotives

Possible to add capacitors, batteries and an electric power drive on wheels that would allow bogie to operate on and off of the linear motor rail section.